Geographic Representation in VRML: GeoVRML 1.1

Geospatial Web-based 3D Visualization for Soil-Landscape modeling

Mike McCann (and Martin Reddy)
Monterey Bay Aquarium Research Institute

3D Soils Unplugged - Monday 11 November, 2002
Overview of GeoVRML 1.1

Content

- Background and goals of GeoVRML
- Issues addressed by GeoVRML
- Features and nodeset discussion
- Example GeoVRML 1.1 content
- Future directions
GeoVRML Background

GeoVRML is a Web3D Working Group

- **Mailing list**: geovrml@geovrml.org (~200 members)
- **Mission**: develop methods and tools for representing geographic data in VRML
- **Started**: Feb 27, 1998
GeoVRML Goals

- Model 3-D geographic phenomena
- Support geographic coordinate systems
- Develop Open Standards
- Distribute models over the web
- Visualize and interact with 3-D models
- Disseminate data to low-end platforms
GeoVRML 1.1 Overview

GeoVRML 1.1 consists of:

- Recommended Practice document detailing extensions
- Open Source Java sample implementation
- GeoVRML 1.1 tools
- Sample Content
GeoVRML Features

New VRML97 nodes that:

- Provide support for geographic coordinate systems, e.g. latitude/longitude and Universal Transverse Mercator (UTM)
- Integrate multiple datasets from different sources and coordinate systems into a single global context
- Provide extended precision beyond VRML97’s limitation to single-precision coordinates
- Support for streaming higher levels of detail for terrain to allow browsing of massive datasets
- Perform geographic-based animations and dynamic content
GeoVRML Screenshots
GeoVRML Screenshot
GeoVRML Screenshot
GeoVRML 1.1 Nodes

- **GeoCoordinate** - build geometry using geographic coords
- **GeoElevationGrid** - define height field in geographic coords
- **GeoLocation** - georeference a vanilla VRML model
- **GeoLOD** - multi-resolution terrain level of detail
- **GeoMetadata** - information about the geographic data
- **GeoOrigin** - used to increase precision of coordinates
- **GeoPositionInterpolator** - animate objects in geographic coord. Systems
- **GeoTouchSensor** - return the geographic coords of object
- **GeoViewpoint** - specify viewpoint in geographic coords
- **InlineLoadControl** - inline with control of loading/unloading
GeoVRML Architecture

- GeoCoordinate
- GeoViewpoint
- GeoLOD

GeoVRML Support Layer

GeoTransform Package

- Individual GeoVRML Node implementations
- Generic GeoVRML utility functions (parsing, origins, ...)
- SEDRIS geographic coordinate system transformations (lat/long, UTM, ...)

ASA-CSSA-SSSA November 2002
Indianapolis
GeoVRML Coordinate Systems

Coordinate systems supported:

- Geodetic (latitude/longitude)
- Universal Transverse Mercator (UTM)
- Geocentric (offset from planet center)

Ellipsoids supported:

- WGS 84
- WGS 72
- + 10 others

241 Datum codes added
Coordinate systems

Projections:

• Not an issue!
• Geographic coordinates are rendered on ellipsoid in 3D
• Represented on computer, not paper – does not need to be flat
• Local VRML coordinate system with Y up available for object placement, i.e. with GeoLocation
GeoVRML 1.1 Coordinate Systems

```java
# lat 57.7 deg, long -3.1 deg, 0 m elev, WGS84
GeoCoordinate {
    geoSystem [ "GD", "WE" ]
    point [ "57.7 -3.1 0" ]
}

# UTM zone 11, 4361550.1 n, 310385.2 e, 1000 m elev
GeoCoordinate {
    geoSystem [ "UTM", "Z11" ]
    point [ "4361550.1 310385.2 1000" ]
}

(All coordinates translated internally to geocentric)
```
GeoVRML Precision

The precision problem

- VRML97 supports only single-precision floats (SF/ MFFloat)
- IEEE 754 single-precision: 32-bit value with 23-bit mantissa
- This provides around 6 to 7 digits of floating point precision
- Not enough for geographic coordinates to sub-meter
- Example cm-resolution geocentric coordinate:
 - double precision: (3477218.18, -182233.28, 5325900.72)
 - rounded to single: (3477218.25, -182233.28125, 5325900.5)
 - displacement error = 23 cm.
GeoVRML Precision

Single-precision rounding artifacts
GeoVRML Precision

Solution to extend VRML’s precision

- Use local coordinate systems, e.g.
 - Define (DP) origin at (3477210.00, -182230.00, 5325900.00)
 - Specify (DP) point of (3477218.18, -182233.28, 5325900.72)
 - Take (SP) difference: (8.18, 3.28, 0.72)

- Use strings to define double-precision values

- Only single-precision coordinates used for rendering
GeoVRML Precision

```plaintext
GeoCoordinate { 
    geoOrigin GeoOrigin { 
        geoSystem [ "GD", "WE" ] 
        geoCoords "57.0 -3.0 0"
    } 
    geoSystem [ "GD", "WE" ] 
    point [ "57.7 -3.1 0"
}

(GeoVRML 1.1 supports a single GeoOrigin per scene)
```
The 10 GeoVRML 1.1 nodes in detail

Extends VRML97

- Uses EXTERN PROTO mechanism
- Coordinate transformation runs in client Java code
- After loading, performance is same as standard VRML
- Windows installer available
- ParallelGraphics Cortona has native implementation of GeoVRML
GeoCoordinate (1 of 10)

Purpose:
- Specify a list of geographic coordinates

Usage:
- Can use a GeoCoordinate node anywhere a VRML97 Coordinate node can go, e.g. PointSet, IndexedFaceSet, or IndexedLineSet.

Uses:
- Build models in terms of lat/long or UTM. For example, a road line segment, a GPS track, or 3-D model from GPS-recorded points or model simulation.
GeoCoordinate (1 of 10)

Shape {
 geometry IndexedLineSet {
 coord GeoCoordinate {
 geoSystem "GD"
 point [
 "35.2500 -116.6877 310"
 "35.2500 -116.6854 312"
 "35.2491 -116.6855 312"
 "35.2485 -116.6778 311"
]
 }
 coordIndex [0 1 2 3 -1]
 }
}
GeoElevationGrid (2 of 10)

Purpose:
- Define a height field using geographic coordinates

Usage:
- Can use a GeoElevationGrid node anywhere a VRML97 ElevationGrid can go, e.g. from the geometry field of a Shape node.

Uses:
- Create terrain models for local or large areas (automatically introduces correct degree of earth curvature)
GeoElevationGrid (2 of 10)

Shape {
 geometry GeoElevationGrid {
 geoSystem "GD"
 geoGridOrigin "-90 -180 0"
 xDimension 84
 zDimension 42
 xSpacing "4.34" # degrees
 zSpacing "4.34" # degrees
 yScale 200 # vert exag
 height [# 84x42 values]
 }
}

ASA-CSSA-SSSA November 2002
GeoLocation (3 of 10)

Purpose:
- Georeference a vanilla VRML97 model onto the surface of the earth

Usage:
- The GeoLocation node is a grouping node that affects the location of its children. It also sets the orientation so that +Y is up for that location.

Uses:
- Place a non-georeferenced model at its correct location and orientation, place a VRML97 Viewpoint or ElevationGrid at a geographic location.
GeoLocation (3 of 10)

GeoLocation {
 geoSystem ["GD", "WE"]
 geoCoords "37.45855 -122.172997 6.5"
 children [
 Inline { url "building1.wrl" }
]
}

ASA-CSSA-SSSA November 2002
Indianapolis
GeoLOD (4 of 10)

Purpose:
- Level of detail management for multi-resolution terrains

Usage:
- The GeoLOD node is a grouping node that switches between two resolution levels of a quad-tree based upon distance from a point.

Uses:
- Build massive tiled, multi-resolution terrain models where the browser progressively loads higher resolution detail as you fly into the terrain.
GeoLOD (4 of 10)

GeoLOD {
 rootUrl "tiles/0/p0p0.wrl"
 child1Url "trees/1/p0p0.wrl"
 child1Url "trees/1/p1p0.wrl"
 child1Url "trees/1/p1p1.wrl"
 child1Url "trees/1/p0p1.wrl"
 geoSystem "GCC"
 center "0 0 0"
 range 7.0
}
GeoMetadata (5 of 10)

Purpose:
- Include a generic subset of metadata about the geographic data

Usage:
- Can be thought of as a WorldInfo node, but specifically designed for describing geographic information.

Uses:
- Provide a subset of metadata information about one or more geographic elements in a scene, and provide links to full metadata and source files.
GeoMetadata (5 of 10)

GeoMetadata {
 summary [
 "title", "SAN FRANCISCO NORTH, CA"
 "description", "DEM GENERATED FROM 1/24,000 DLG-SOURCE"
 "coordinate-system", "UTM Z10"
 "extent", "555060.99 4177990.30 543974.53 4191924.61"
 "resolution", "30"
 "originator", "United States Geological Survey (USGS)"
 "data-format", "USGS 7.5 min DEM"
]
 data USE GEOEG
 url "sanfranciscon.dem"
}

ASA-CSSA-SSSA November 2002
Indianapolis
GeoOrigin (6 of 10)

Purpose:
- Specify a local coordinate system for increased floating point precision

Usage:
- You can use a GeoOrigin node only as the value for a `geoOrigin` field in another GeoVRML node. Only one GeoOrigin per scene. Use `DEF/USE` to provide the same GeoOrigin node to all GeoVRML nodes.

Uses:
- Remove floating point rounding artifacts for ground-level models such as quantization of vertices and camera jitter during navigation.
GeoOrigin (6 of 10)

GeoCoordinate {
 geoOrigin DEF ORIGIN GeoOrigin {
 geoSystem ["GD", "WE"]
 geoCoords "57.0 -3.0 0"
 }
 geoSystem ["GDC", "WE"]
 point ["57.7 -3.1 0"]
}

- CSSA-SSSA November 2002
 Indianapolis
GeoPositionInterpolator (7 of 10)

Purpose:
- Animate objects within a geographic coordinate system

Usage:
- Can use a GeoPositionInterpolator node anywhere that a VRML97 PositionInterpolator node can go.

Uses:
- Perform fly-throughs of GeoVRML content by animating the camera, animate objects based upon GPS data or key frame locations.
DEF PI GeoPositionInterpolator{
 geoSystem "GDC"
 key [0.0, 0.1, 0.55, 1.0]
 keyValue [
 "51.5122 -0.065 0" # London
 "48.865 2.35 0" # Paris
 "40.6698 -73.9438 0" # New York
 "51.5122 -0.065 0" # London
]
}"
Group {
 children [
 DEF GTS GeoTouchSensor {
 geoOrigin USE ORIGIN
 }
 geometry GeoElevationGrid {
 . . .
 }
]
 ROUTE GTS.hitGeoCoord_changed TO TEXTSCRIPT.set_value
Purpose:
- Specify a viewpoint using geographic coordinates

Usage:
- Can use a GeoViewpoint anywhere a VRML97 Viewpoint node can go. The viewpoint orientation is relative to the up vector at that location.

Uses:
- Place the camera at a geographic coordinate, setup sensible navigation options such as height-based velocity and near/ far clipping planes.
GeoViewpoint (9 of 10)

GeoViewpoint {
 geoSystem "GD"
 position "51.5 -0.1 10"
 orientation 1 0 0 -1.57
 description "My GeoViewpoint"
 navType "EXAMINE"
 headlight TRUE
 jump TRUE
}
DEF CUBE InlineLoadControl {
 url "cube.wrl"
 load FALSE
}

ProximitySensor {
 size 1e3 1e3 1e3
}

ROUTE PROX.isActive TO CUBE.set_load
How to use GeoVRML 1.1

In order to view GeoVRML worlds:

- Go to http://www.geovrml.org/1.1/download/
- Install the geovrml.jar file in your CLASSPATH (Windows installer does this for you)

Platforms tested:

- Cosmo Player 2.1.1 / Netscape 4.x / Windows 95/98/NT
- Cosmo Player 2.1.1 / Netscape 4.x / IRIX 6.5.4
- Cortona 2.0 / Internet Explorer 5 / Windows 98
GeoVRML Tools

DEM to GeoVRML 1.1 translation

- Translates 7.5-min USGS DEMs
- Control number of polygons
- Vary vertical exaggeration
- Create grey/color image of DEM
- Merge multiple DEMs into one scene!
- Handle DEMs in feet or meters!
- Open Source + IRIX/Win32 binary

http://www.ai.sri.com/~reddy/geovrml/dem2geoeg/
GeoVRML Tools

TsmApi and MB-System

- Convert elevation data to GeoElevationGrids
- Adapted to Oceanographic data
- Builds LOD quad-tree
- Adds GeoTouchSensors

http://www.tsmapi.com
http://www.ldeo.columbia.edu/MB-System
GeoVRML Tools

Rez from Chris Thorne

- Parses (Geo)VRML elevation grids
- Creates multiresolution tree of grids
- Gzip option for reducing file sizes
- Scaling of grid size and height
- Deals with large elevation grids
- Open Source Java implementation

Is That All!

What if I want more functionality?

• Join/Contribute to the geovrml@geovrml.org list
• The GeoVRML 1.1 implementation is Open Source
• Take the Java source code and add your new functionality
• Post your changes to the list

http://www.geovrml.org/1.1/source/
Future Directions for GeoVRML

Improvements:

• Support more coordinate systems
• Support geoids (elevations from mean sea level)
• Support multiple GeoOrigin nodes in a scene
• Support dynamic level of detail schemes
• Binary format for large GeoElevationGrids
• New nodes: GeoProximitySensor, GeoTransform, etc.

Expansion:

• Support X3D by testing the GeoSpatial profile
• Integrate with other efforts (OpenGIS Web Mapping Testbed?)
• More tools to translate to/from GeoVRML