Genomic sensors

Sensors: Underwater Research of the Future (SURF Center)


Pseudo-nitzschia image using scanning electron microscopy

DNA and antibody tests are commonly used to assess the presence, abundance, and activity of a wide variety of marine microorganisms. The goal of this project is to enable greater use of such methods by developing the means to autonomously collect, preserve, and process discrete samples. Achieving this goal rests on two different types of activities: methods development and instrumentation engineering.

We are interested in devising ways to collect a range of microbes, phytoplankton, small invertebrates, and environmental DNA, and interrogate that material using a variety of bioanalytical procedures in both laboratory and field settings. The methodological and instrumentation advances contribute to creating a class of device known as “ecogenomic sensors”; the Environmental Sample Processor (ESP) exemplifies this concept.



Kevin Gomes

Information Engineering Group Lead

John Ryan

Senior Research Specialist


Upper-ocean systems
Biological oceanography
Biological oceanography research
Publication—Global modes of sea surface temperature
Chemical sensors
Chemical data
Land/Ocean Biogeochemical Observatory in Elkhorn Slough
Listing of floats
SOCCOM float visualization
Periodic table of elements in the ocean
Biogeochemical-Argo Report
Profiling float
Marine microbes
Population dynamics of phytoplankton
Microbial predators
Microbe-algae interactions
Targeted metagenomics
In the news
Upcoming events and lab news
Past talks and presentations
Join the lab
Molecular ecology
Molecular systematics
SIMZ Project
Bone-eating worms
Gene flow and dispersal
Molecular-ecology expeditions
Interdisciplinary field experiments
Genomic sensors
Ocean observing system
Midwater research
Midwater ecology
Deep-sea squids and octopuses
Food web dynamics
Midwater time series
Respiration studies
Zooplankton biodiversity
Seafloor processes
Biology and ecology
Effects of humans
Ocean acidification, warming, deoxygenation
Lost shipping container study
Effects of upwelling
Faunal patterns
Past research
Technology development
High-CO2 / low-pH ocean
Benthic respirometer system
Climate change in extreme environments
Monitoring instrumentation suite
Sargasso Sea research
Antarctic research
Long-term time series
Geological changes
Arctic Shelf Edge
Continental Margins and Canyon Dynamics
Coordinated Canyon Experiment
Monterey Canyon: Stunning deep-sea topography revealed
Ocean chemistry of greenhouse gases
Emerging science of a high CO2/low pH ocean
Submarine volcanoes
Mid-ocean ridges
Magmatic processes
Volcanic processes
Explosive eruptions
Hydrothermal systems
Back arc spreading ridges
Near-ridge seamounts
Continental margin seamounts
Non-hot-spot linear chains
Eclectic seamounts topics
Margin processes
Hydrates and seeps
California borderland
Hot spot research
Hot-spot plumes
Magmatic processes
Volcanic processes
Explosive eruptions
Volcanic hazards
Hydrothermal systems
Flexural arch
Coral reefs
ReefGrow software
Eclectic topics
Submarine volcanism cruises
Volcanoes resources
Areas of study
Microscopic biology research
Open ocean biology research
Seafloor biology research
Automated chemical sensors
Methane in the seafloor
Volcanoes and seamounts
Hydrothermal vents
Methane in the seafloor
Submarine canyons
Earthquakes and landslides
Ocean acidification
Physical oceanography and climate change
Ocean circulation and algal blooms
Ocean cycles and climate change
Research publications