Vehicle Persistence Update

January 2017

Our new project, Fault Prognostication (see below) is just underway. We’re in the process of adding a bunch of monitoring equipment to a benchtop version of the LRAUV (hyperlink to LRAUV pages) that we’ll feed to unsupervised learning algorithms in order to learn the internal representation. Our initial focus is the vehicle’s pitch pack, and to study it we’re writing a LabView interface that will collect time-resolved data from a pair of vibration sensors + power usage + absolute position measurement.

December, 2016

Back in September Ben presented a paper on classification of vertical plane failures by Topic Models (hyperlink to paper) at the IEEE Oceans conference. The paper was very well received. Since then we’ve looked at more field data and examined in detail how perplexity changes after a new state is discovered. We just submitted a comprehensive article to the Journal of Field Robotics’ special issue on Ocean Robotics.

August, 2016

The figure below shows an example of using Topic Modeling for fault detection. Each “topic” is a probability distribution learned from the data, and the plot shows the 2D projections of all the topics that are found (projection with Principal Component Analysis). What is interesting is that without our telling the system what to look for (unsupervised learning), it was able to match each of the commanded policies (float on surface, pitch, surface, hold depth) AND the fault state that arose after the vehicle’s mass shifter failed but before the vehicle’s software figured it out, AND the fault state after the software realized it.

Very encouraging results but we’re not quite sure yet how well it will generalize.

2D projection

2D projection of the vertical plane topics learned from the vehicle’s sensory data.Save

Technology

Solving challenges
Taking the laboratory into the ocean
Environmental Sample Processor (ESP)
In Situ Ultraviolet Spectrophotometer
Midwater Respirometer System
Mobile flow cytometer
Enabling targeted sampling
Automated Video Event Detection
Environmental Sample Processor (ESP)
Gulper autonomous underwater vehicle
Mobile flow cytometer
Wave Glider-based communications hotspot
Advancing a persistent presence
Aerostat hotspot
Benthic event detectors
Benthic rover
Fault Prognostication
Long-range autonomous underwater vehicle Tethys
MARS hydrophone for passive acoustic monitoring
Monterey Ocean-Bottom Broadband Seismometer
Shark Café camera
Vehicle Persistence
Wave Glider-based communications hotspot
Emerging and current tools
Communications
Aerostat hotspot
Wave Glider-based communications hotspot
Data management
Oceanographic Decision Support System
Spatial Temporal Oceanographic Query System (STOQS) Data
Video Annotation and Reference System
Instruments
Apex profiling floats
Benthic event detectors
Deep particle image velocimetry
Environmental Sample Processor (ESP)
Persistent presence—2G ESP
How does the 2G ESP work?
Arrays on the 2G ESP
Printing probe arrays
Expeditions and deployments
In Situ Ultraviolet Spectrophotometer
Investigations of imaging for midwater autonomous platforms
Lagrangian sediment traps
Midwater Respirometer System
Mobile flow cytometer
SeeStar Imaging System
Shark Café camera
Smart underwater connector
Power
Wave-Power Buoy
Vehicle technology
Benthic Rover
Gulper autonomous underwater vehicle
Imaging autonomous underwater vehicle
Seafloor mapping AUV
Long-range autonomous underwater vehicle Tethys
Mini remotely operated vehicle
ROV Doc Ricketts
ROV Ventana
Video
Automated Video Event Detection
Deep learning
Video Annotation and Reference System
Technology publications
Technology transfer