Introduction to Model I and Model II linear regressions

What are linear regressions?

  • Linear regression is a statistical method for determining the slope and intercept parameters for the equation of a line that “best fits” a set of data.
  • The most common method for determining the “best fit” is to run a line through the centroid of the data (see below) and adjust the slope of the line such that the sum of the squares of the offsets between the line and the data is a minimum. Thus, this is called the “least squares” technique.
  • The centroid is the point determined by the mean of the x-values and the mean of the y-values. Regardless of the model chosen, the line will pass through the centroid of the data. For weighted data sets, the line will pass through the weighted centroid.
  • Among the various models, there are different methods for calculating the offsets between the line and the data points. Since many of these methods minimize the sum of the squares of the offsets, they are all called “least squares” techniques; because of this, the term “least squares” does not designate a specific nor a unique method.

How are Model I and Model II regressions different?

  • In the case of Model I regressions, the offsets are measured parallel to one of the axes. For example, in the regression of Y-on-X (the most common regression technique), this would be parallel to the Y-axis. So, we fit the line by minimizing the sum of the squares of the y-offsets. For the X-on-Y regression, we would use the x-offsets measured parallel to the X-axis.
  • For Model II regressions, the offsets are measured along a line perpendicular (or normal) to the regression line. Thus, to use Pearson’s term, the line is fit by minimizing the sum of the squares of the normal deviates.

Why are Model I and Model II regressions different?

  • In the case of Model I regressions, X is the INDEPENDENT variable and Y is the DEPENDENT variable: X is frequently controlled by the experimenter (or known very precisely) and Y varies in response to the changes in X. One assumes little or no error in X and all regression error is attributed to measurement or other error in Y. The equation tells us how Y varies in response to changes in X.
  • For Model II regressions, neither X nor Y is an INDEPENDENT variable but both are assumed to be DEPENDENT on some other parameter which is often unknown. Neither are “controlled”, both are measured, and both include some error. We do not seek an equation of how Y varies in response to a change in X, but rather we look for how they both co-vary in time or space in response to some other variable or process. There are several possible Model II regressions. Which one is used depends upon the specifics of the case. See Ricker (1973) or Sokal and Rohlf (1995, pp. 541-549) for a discussion of which may apply. For convenience, I have also compiled some rules of thumb.

Products

Data repository
Data policy
What is happening in Monterey Bay today?
Central and Northern California Ocean Observing System
Chemical data
Ocean float data
Slough data
Mooring ISUS measurements
M1 ISUS CTD Data Display
Southern Ocean Data
Mooring data
M1 Mooring Summary Data
M1 ADCP (CeNCOOS)
M1 Asimet
M1 Download Info
M1 EMeter
M1 Flourometer (CeNCOOS)
M1 GPS Location
Molecular and genomics data
ESP Web Portal
Seafloor mapping
Upper ocean data
Spatial Temporal Oceanographic Query System (STOQS) Data
Tide prediction
Image gallery
Video library
Seminars
Previous seminars
David Packard Distinguished Lecturers
Research software
Video Annotation and Reference System
System Overview
Knowledgebase
Installation
Annotation Interface
Video Tape User Guide
Video File User Guide
Still Images User Guide
Installation
Annotation Glossary
Query Interface
Basic User Guide
Advanced User Guide
Results
Installation
Query Glossary
FAQ
VARS Publications
Oceanographic Decision Support System
MB-System seafloor mapping software
MB-System Documentation
MB-System Announcements
MB-System Announcements (Archive)
How to Download and Install MB-System
MB-System Discussion Lists
MB-System FAQ
Matlab scripts: Linear regressions
Introduction to Model I and Model II linear regressions
A brief history of Model II regression analysis
Index of downloadable files
Summary of modifications
Regression rules of thumb
Results for Model I and Model II regressions
Graphs of the Model I and Model II regressions
Which regression: Model I or Model II?
Matlab scripts: Oceanographic calculations
Matlab scripts: Sound velocity
Visual Basic for Excel: Oceanographic calculations
Educational resources
MBARI Summer Internship Program
Education and Research: Testing Hypotheses (EARTH)
EARTH workshops
2016—New Brunswick, NJ
2015—Newport, Oregon
2016 Satellite workshop—Pensacola, FL
2016 Satellite workshop—Beaufort, NC
EARTH resources
EARTH lesson plans
Lesson plans—published
Lesson plans—development
Lesson drafts—2015
Lesson drafts—2016 Pensacola
Center for Microbial Oceanography: Research and Education (C-MORE) Science Kits
Publications
Sample archive