Monterey Bay Aquarium Research Institute
Northern Expedition
July 27 - September 10, 2013


Day 4: Searching for rare lavas
August 26, 2013

In 1998 and 1999, during an investigation of the caldera on Axial volcano, we used our rock corer to sample some small cones along the east margin of Axial’s north rift zone. These glass samples turned out to be a lava type called “andesite” that are quite rare in ocean ridge and seamount environments. Andesites are usually associated with explosive volcanoes on land—like those in the Andes volcanic chain or Mount St. Helens. They are thought to derive from basalt magmas after they have cooled and partially crystallized. One of the main objectives of our dive today was to see if we could locate these andesitic lavas, to document how they erupted, and to determine how they might be related to the normal mid-ocean ridge basalts that comprise Axial and the surrounding seafloor.

Upon settling on the bottom with the ROV early this morning, we immediately knew the lavas we were seeing were not typical basalts and likely were andesites. How did we surmise this? Because ocean ridge andesites have higher silica contents and contain more gases (mostly CO2 and H2O), the lavas form pillows that are much larger than typical ocean floor basalts, contain abundant frozen gas bubbles called “vesicles,” and have distinctive bread-crust textures or elongate striations on their surfaces.

bread-crust texture
Bread-crust inflation cracks and striations on the surface of an andesite lava pillow that is several meters across. Small pockets of sediment have drifted into the lowest points of the cracks.

An inexperienced marine geologist may not initially recognize these differences from normal seafloor basalts, but having seen these before on the southern Juan de Fuca Ridge and the East Pacific Rise, we easily recognized them as andesites. What we were not expecting were the various structures they made and forms they took, as well as the very large area these lavas appeared to cover. In fact, it appears that all of the small cones and mounds are composed of andesite that makes up their broad bases, as well as steep to near-vertical walls covered with elongate andesite pillow tubes.

andecite pillow
Elongated andesite lava pillows flowed down a steep pillow mound. One has cracked open and drained a twisted, elongate drip. These pillows are inhabited here by small red corals and an anemone (Actinostolidae).

In some places the ends of these tubes have broken off and cascaded below, but in others they have remained in place along sheer walls. Our hypothesis is that when these lavas erupted they were much more viscous than basalts because of their chemical composition, lower temperature, and high-gas vesicle contents, and that allowed them to build steep-sided cones and elongate mounds. What we don’t yet understand is why this area of the rift zone has erupted such a great volume of these rare ocean rock types and, ultimately, what magmatic process led to their formation.

— Mike Perfit

From left to right, Dorsey Wanless, Jenny Paduan, Mike Perfit, and Dave Clague sort rock samples from the ROV's sample drawer after the dive. We rely on our notes and video framegrabs taken during the dive to distinguish the samples and know which drawer compartments they were placed into when they were collected, so we can be sure which rock came from which flow or pillow mound for our subsequent analyses. These fragile, glassy lavas often break into several pieces, and we don't want to accidentally mix and match.
rock processing
From left to right, Dorsey, Iliya Smithka, and Anita Englestad photograph, describe, and clean the rock samples after the dive.
Will Vaughan sieves a sample of gravel collected from near the base of one of the pillow mounds to see if there is chemical or morphological diversity in the erupted lavas not reflected in the sampled rocks.
The cones we surveyed support higher numbers of corals than in other areas we've seen at Axial. This may indicate that water currents, carrying abundant small particles of food, flow relatively fast here. These bubble-gum corals (Paragorgia arborea) were perched near the top of a steep slope and were oriented toward the summit, into the current.
A very photogenic octopus, Graneledone boreopacifica.
Previous log Next log

Leg 1:
Gas hydrates

July 27 - August 6

Legs 2-3:
Seafloor lava flows

August 10 - September 1

Leg 4:
Deep-sea chemistry

September 5 - 10

research teamResearchers