Monterey Bay Aquarium Research Institute


Volcanoes and Seamounts Logbook
Day 4: Big expectations
April 24, 2012 • (Leer en Español)

It has been beautiful, glassy calm, and sunny for the trip so far. Today a little wind riffle picked up and there is a slight swell. It is probably still dry, dry, dry on shore in the desert, but it is hot and humid out here on the water. The air conditioning on the ship is barely keeping up—it is 30 degrees Celsius (85 degrees Fahrenheit) in the lab from where I write. However, these are perfect conditions for diving, and we continue to have successful remotely operated vehicle (ROV) operations more than 2,300 meters (7,500 feet) below our little ship.

sunset
There is some haze obscuring the southern tip of Baja, almost 100 kilometers (62 miles) off to the west, throughout the day until the sun sets behind the peninsula and the mountains pop into view. Smoke from a fire on shore adds some color to the sky.

The active hydrothermal vents and young, glassy lava flows we found during our April 22 dive are on the shallowest and broadest area of the Alarcón Ridge neovolcanic zone. The dive sites yesterday and today are to the south and north of that, respectively, where the axis deepens and narrows. Scientists have determined elsewhere on the ridge system that if the magma chamber is under only part of a ridge segment, heat and volcanic activity will be focused above it and a bulge will develop. On the deeper parts of the ridge there will be less heat and reduced volcanic activity. We can see in the maps from our autonomous underwater vehicle (AUV) that Alarcón's broad inflated area is paved with extensive, unfractured flows, and to the north and south of the inflated zone the flows tend to be smaller and some of them are highly fractured. The fracturing is due to the ridge continuing to spread since the individual flows erupted, and the extent of fracturing suggests the relative amount of time that has passed (see yesterday's log).

So our expectation was that the flows we explored yesterday and today should be, on average, older than those we explored April 22, and we found plenty of confirming evidence. In addition to large fractures in the flows, the evidence included hydrothermal chimneys that are no longer actively venting, deep accumulations of pelagic sediment, and steep mounds of pasty pillow lavas rather than vigorous, fluid sheet flows.

—Jenny Paduan

map
Map of the Alarcon Rise spreading ridge, showing its full extent from the southern to the northern transform faults (through the center of the map from the lower left to upper right). The starting points of our ROV dives on the ridge are the labeled dots. ROV dive D392 was on the inflated bulge of the broadest, most volcanically active part of the ridge and the start depth for the dive was 2,297 meters (7,536 feet). The start depth for D393 was 2,379 meters (7,805 feet), and D394 was 2,373 meters (7,785 feet). Bathymetry data after Castillo et al. (2002).

We have started the day with big expectations; there’s a possibility to find some hydrothermal vents and chimneys, maybe not as impressive as the ones we found on Sunday, but finding these features on the seafloor is always a reason to be excited. Our submersible seems like a spy, revealing the secrets of the deepest part of the oceans. Our first image of the seafloor is a cracked pillow lava field with fine sediments on top. Like someone getting used to a new environment, the submersible looks around and then starts its amazing journey along the ocean ridge. So come with us and be part of this incredible world.

pillows
Cracked pillow lava flow.

As we fly above the ocean ridge we encounter some corals and crustaceans. It is time to take a sample from the lava lying on the floor so the submersible slowly lands on top of the lava. Like a person waking up in the morning and stretching his arms, the submersible stretches his mechanical arm for the first time in the day and very gently gets a fragment of lava and deposits the sample in a box container. Isn’t this exciting? In a few moments we are going to have in our hands a piece of new seafloor that not long ago was magma coming from the earth’s interior!

lava sample
Lava sample taken by submersible.
coral and crab
White coral (Chrysogorgia sp.) and a small crustacean (galatheid crab) behind the coral on the right side of the image.

The submersible continues its journey and we see some strange-looking worms—more than 30 centimeters (12 inches) long—living in the sediment deposited on the top of the lava flows. Suddenly, we find some hydrothermal chimneys, but they appear to be inactive. Surrounding these regions we can see a reddish color that reveals the presence of minerals that precipitated when the chimneys were active. As the day passes, the submersible continues its journey above the seafloor, and we see white corals, crabs, sea cucumbers, seastars, fissures in the seafloor, lava flows, fault scarps, and so many other features and living organisms that it is not possible to mention all of them right now. Clearly the seafloor near the mid-ocean ridges is one of the most dynamic places on our planet's surface, where only special and unique organisms can survive, and where hydrothermal vent fields are like an oasis in the desert, full of life!

—Rigoberto Guardado

Inactive hydrothermal chimney
Inactive hydrothermal chimney.
minerals
Reddish minerals precipitated when the hydrothermal chimney was active.

Previous log Next log

Volcanoes & Seamounts
 Equipment

R/V Western Flyer

The R/V Western Flyer is a small water-plane area twin hull (SWATH) oceanographic research vessel measuring 35.6 meters long and 16.2 meters wide. It was designed and constructed for MBARI to serve as the support vessel for ROV operations. Her missions include the Monterey Bay as well as extended cruises to Hawaii, Gulf of California and the Pacific Northwest.

ROV Doc Ricketts

ROV Doc Ricketts is MBARI's next generation ROV. The system breaks new ground in providing an integrated unmanned submersible research platform, with many powerful features providing efficient, reliable and precise sampling and data collection in a wide range of missions.

Push cores

A push-core looks like a clear plastic tube with a rubber handle on one end. Just as its name implies, the push core is pushed down into loose sediment using the ROV's manipulator arm. As the sediment fills up the core, water exits out the top through one-way valves. When the core is pulled up again, these valves close, which (most of the time) keeps the sediment from sliding out of the core tube. When we bring these cores back to the surface, we typically look for living animals and organic material in the sediments.

Niskin bottles

Niskin bottles are used to collect water samples as well as the tiny bacteria and plankton in that volume. The caps at both ends are open until the bottles are tripped, when the caps snap closed.


Biobox

The box fits in a partition in the sample drawer. It is shown open, with an animal being placed into it by the ROV's manipulator. When the lid is closed, the box will hold water to protect the animals inside.


Rock crusher

This device is used to collect volcanic glass fragments from the surface of a flow. It is made of about 450kg of lead and steel and is launched over the stern of the ship on a wire. Fragments of rock that break off of the lava flow on impact are trapped in wax-tipped cones mounted around the crusher. The wax is melted in the lab to liberate the rock particles for analysis.

Benthic toolsled

The benthic toolsled is attached to the bottom of the ROV for our geology dives. Its components are the manipulator arm and the sample drawer. The sample drawer is shown open on deck, full of rocks. Normally it is closed when the vehicle is operating and is opened only when a sample needs to be stowed. Partitions in the drawer help us keep the rocks in order. The rocks often look alike, but the conditions and chemistries of the eruptions are different so it is important that we know where each came from.

Glass suction sampler

This equipment is used to vacuum glass particles and larval animals from cracks and crevices. The carousel of small plastic jars fitted with wire mesh will be mounted in the benthic toolsled. The hose will be held by the ROV's manipulator and a suction will be drawn by the pump.

Sediment scoops

Canvas bags on a T-handle for collecting gravel or other materials that fall out of a push-core.


Temperature probe

Held by the ROV's manipulator, the wire on the right is placed into the fluid emitted from a hydrothermal vent to record the temperature.


Vibracores

Vibracoring is a common technique used to obtain samples from water-saturated sediment. These corers work by attaching a motor that induces high frequency vibrations in the core liner that in turn liquefies the sediment directly around the core cutter, enabling it to pass through the sediment with little resistance.


 Crew

R/V Western Flyer

Ian Young
Master


 

George Gunther
First Mate


 

Matt Noyes
Chief Engineer


 

Andrew McKee
Second Mate


 

Lance Wardle
First Engineer


 

Shaun Summer
Relief First Engineer


 

Olin Jordan
Oiler


 

Craig Heihn
Relief Deckhand


 

Jason Jordan
Relief Deckhand


 

Dan Chamberlain
Electronics Officer


 

Patrick Mitts
Steward


 

ROV Doc Ricketts

Knute Brekke
Chief ROV Pilot


 

Mark Talkovic
Senior ROV Pilot


 

Randy Prickett
Senior ROV Pilot


 

Bryan Schaefer
ROV Pilot/Technician


 

Eric Martin
ROV Pilot/Technician


 

 Research Team

Dave Clague
Chief Scientist
MBARI

Dave's research interests are nearly all related to the formation and degradation of oceanic volcanoes, particularly Hawaiian volcanoes, mid-ocean ridges, and isolated seamounts. Topics of interest include: compositions of mantle sources for basaltic magmas and conditions of melting; volatile and rare-gas components in basaltic magmas and their degassing history; chronostratigraphic studies of eruption sequence and evolution of lava chemistry during volcano growth; subsidence of ocean volcanoes and its related crustal flexure, plate deformation, and magmatic activity; geologic setting of hydrothermal activity; origin of isolated seamounts; and monitoring of magmatic, tectonic, and hydrothermal activity at submarine and subaerial volcanoes.

Jenny Paduan
Research Specialist
MBARI

Jenny works with Dave Clague in the submarine volcanism project, processing the high-resolution MBARI mapping AUV data and interpreting the maps using ROV observations and samples from our research sites. On this cruise, she will stand watches in the ROV control room, help with rock and sediment sample workup and curation once the vehicle is on deck, and coordinate these cruise logs. She is now quite solidly a marine geologist, but her degrees are in biochemistry (Smith College) and biological oceanography (Oregon State University). She is thankful for the opportunities that have led her to study volcanoes, and loves being involved with the research and going to sea. She looks forward to discovering more about how Earth works.

Lonny Lundsten
Senior Research Technician
MBARI

On this cruise, Lonny will be in charge of biological sample collection and processing and video data management. This work entails identifying unique biological and geological features that will be seen during the dive, while using MBARI-designed software to log the observations. He is especially excited about this expedition, because no one has surveyed this particular seamount before, and he expects to find many new species on this cruise.

Julie Martin
Senior Research Technician
MBARI

Julie works with the submarine volcanism group, where she currently produces high resolution maps of the seafloor that are used to identify geologic features along submarine ridges and seamounts. Her research interests also include modeling of volcanic ash from sub-aerial, large-scale explosive eruptions.

Ryan Portner
Postdoctoral Fellow
MBARI

Ryan's work with the submarine volcanism project primarily focuses on the formation and distribution of volcaniclastic deposits on active and extinct seamounts and mid-ocean ridges. By categorizing the diversity in these deposits with respect to volcanic landforms he hopes to better understand the underlying controls on explosive vs. non-explosive deep marine eruptions. His background research on deep-marine gravity flow deposits preserved in sedimentary-volcanic successions exposed on land lends a comparable platform to study similar deposits of the modern oceans.

Julie Bowles
Collaborator

Julie is a Research Associate and Staff Scientist with the Institute for Rock Magnetism at the University of Minnesota. As a paleomagnetist, Julie studies variations in Earth's magnetic field and how those variations get recorded in rocks and sediments. One of Julie's particular interests involves using paleofield variations recorded in mid-ocean ridge lava flows to place age constraints on the flows. On this expedition, Julie is interested both in using this technique to try to date some of the young lava flows and in gaining a better understanding of how the Earth's field has varied in this particular location.

Paterno Castillo
Collaborator

Pat is a Professor of Geology at the Scripps Institution of Oceanography, University of California, San Diego. His research interests include petrology and geochemistry of magmas produced within and along divergent and convergent boundaries of tectonic plates, magmatic and tectonic evolution of continental margins and mantle geodynamics. On this expedition, Pat is interested in the petrologic and tectonic evolution of the newly formed oceanic basement in the Gulf of California.

Brian Dreyer
Isotope Geologist
UC Santa Cruz
Institute of Marine Sciences

Brian studies the recent magmagenesis and petrology of the Juan de Fuca Ridge. His interest in mid-ocean ridges began during his postdoctoral fellowship with MBARI's submarine volcanism project; there, he utilized uranium-series disequilibria within individual lavas of Axial Seamount to clarify eruption and petrogenetic timescales. At mid-ocean ridge systems globally, Brian is interested in a) how variability in lava morphology, geochemistry, and petrology reflect deeper mantle-melting and magmatic processes and their complex interplay with tectonism and b) improving the chronological framework of the ridge magmatic plumbing systems. Brian received his Ph.D. in Earth and Planetary Science from Washington University in St. Louis in 2007.

Rigoberto Guardado
Collaborator
Universidad Autónoma de Baja California

Rigoberto Guardado is a teacher and research scientist with the Facultad de Ciencias Marinas (Marine Sciences Faculty) at the University of Baja California in Mexico. As a oceanographer, Rigoberto studies sedimentation processes in the ocean. On this expedition, Rigoberto is interested in learning more about the sediments in this area of the Gulf of California.

Ronald Michael Spelz Madero
Collaborator
CICESE

Ronald Spelz earned his Ph.D. in earth sciences from Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) in 2008. His research interests are mainly focused in the structural geology and tectonic geomorphology of fault bounded basins and mountain range-fronts in northern Baja California. He is also part of the multidisciplinary research team studying the origin and effects of the El Mayor-Cucapah 7.2 magnitude earthquake which struck northern Baja in April 4, 2010. Ronald presently works in the Marine Sciences Faculty at the Universidad Autónoma de Baja California.

Hiram Rivera
Collaborator
Universidad Autónoma de Baja California

Hiram Rivera is part of the Coastal Management group and teacher in the Faculty of Marine Science at Universidad Autónoma de Baja California. Since 2008 he has worked as a technician with geographic information systems (GIS) applied to fisheries resource management. From 2010 to now he has worked with his students in public participation geographic information systems (PPGIS) 3D models applied to the use of GIS to broaden public involvement in policymaking. His interest for this cruise is to learn about the techniques associated with digital cartography of the Gulf of California.



Last updated: Apr. 27, 2012