Monterey Bay Aquarium Research Institute


Los volcanes y los montes submarinos
Diario de campaña
Día 2: En agua caliente
Abril 22, 2012

A medida que el vehículo descendía a las azules profundidades sobre la cordillera de Alarcón, en el cuarto de control se sentía una gran emoción y incertidumbre porque el día de hoy realizaríamos una inmersión a uno de los medios ambientes marinos más extraños que podemos encontrar en aguas profundas, un campo de ventilas hidrotermales. Las ventilas hidrotermales son regiones donde el agua caliente emana de suelo marino, permitiendo el desarrollo de comunidades ricas en organismos, muchos de los cuales no se pueden encontrar en ningún otro sistema oceánico.

A lo largo de las cordilleras de dispersión que encontramos en el fondo de los océanos, como es el caso de la coordillera de Alarcón, el piso oceanico es fracturado y afallado debido a la gran actividad tectónica que se presenta en esas zonas. El agua fría se percola a través de estas fracturas y es calentada por el magma caliente que se encuentra bajo la cordillera. A medida que el agua es calentada, esta se hace menos densa y empieza a subir nuevamente a la superficie. Durante su acenso, el agua caliente disuelve minerales de la corteza oceánica. Cuando el agua caliente sale del piso oceánico y hace contacto con el agua fría del fondo del mar, estos minerales se precipitan y con el tiempo pueden formar chimeneas muy altas y montes compuestos de sulfuros polimetálicos. El sulfuro que se encuentra en el agua que emana de la chimenea hidrotermal también es una fuente de energía necesaria para que los organismos que viven en los alrededores de estas chimeneas hidrotermales puedan sobrevivir.

hydrothermal vent
Hydrothermal vent along the Alarcón Rise.

Las ventilas hidrotermales han sido documentadas al sur de nuestra posición a los 21 ºN y al norte de Gauymas, sin embargo, aún no se han encontrado ventilas a lo largo de la cordillera de Alarcón. De hecho, existen muy pocos estudios sobre esta cordillera y nuestra inmersión es la primera que explorará esta sección de la cordillera. Ahora, tal vez te preguntes, si nunca antes se había explorado esta área cómo sabíamos donde hacer la inmersión para encontrar las chimeneas hidrotermales? Basándonos en la geología de la región, nosotros sabíamos que existía una alta probabilidad de que en la cordillera de Alarcón se encontraran ventilas hidrotermales activas. Sin embargo, sabíamos que el utilizar el Vehículo Submarino Autónomo operado a Remoto (ROV) para explorar toda la coordillera tratando de encontrar estas ventilas hidrotermales era prácticamente imposible. Por resta razón, antes de venir enviamos un Vehiculo Autónomo Submarino (AUV) que se encargó de hacer un mapa de la zona. El mapa de alta resolución que se generó mostraba las profundidades del segmento que íbamos a estudiar con una precisión de 1 m. y basándonos en estos mapas de alta resolución nos fue posible los rasgos que aparentaban ser chimeneas hidrotermales.

Así que iniciamos nuestra inmersión y una vez que el submersible llegó al fondo marino empezamos a dirijirnos al lugar donde se encontraban las chimeneas previamente identificado en el mapa del AUV. A medida que nos acercabamos, sabiamos que ibamos en la dirección correcta ; observamos una prospera comunidad de organismos que habitan en la zonas donde existen ventilas hidrotermales. Algunos de los organismos más característicos incluían los grandes gusanos tubicolas de color rojo, Riftia sp. que viven aglomerados alrededor de las ventilas hidrotermales donde emana agua caliente.

tube worms
Tube worm, Riftia sp., communities at hot-water vent sites.
lobsters
An army of squat lobsters advances over the top of a mound of old tube worm casings.

Puesto que nunca antes se habían observado comunidades de ventilas hidrotermales en esta sección de la coordillera, nos detuvimos a tomar algunas muestras. Se realizará un análisis genético de los organismos colectados y estos marcadores genéticos serán comparados con los de otros sitios con ventilas hidrotermales, específicamente con ventilas localizadas en los 21°N y Guaymas. Estos análisis genéticos permitirán una mayor comprensión de porqué de la distribución de especies de ventilas hidrotermales a lo largo de sistema de coordilleras del Pacífico Este.

ROV collecting clam
The ROV’s manipulator arm collecting a clam from an active vent site.

Después de muestrear, continuamos nuestro viaje hacia una gran chimenea identificada en nuestro mapa y justo como se predijo encontramos varias chimeneas muy altas, algunas de ellas activas y otras no. Pudimos verificar que las alturas de las chimeneas coincidían con la altura que obtuvimos previamente a partir del mapa del AUV.

chimney
This is the top of the largest chimney we found today. It rises more than 20 meters (65 feet) from the seafloor. While the top does not look very active, there is a thriving community of Riftia at the base.

Las chimeneas activas expulsaban grandes cantidades de humo negro y normalmente se refiere a ellas como fumarolas de humo negro. Sin embargo, el humo no es realmente humo, sino sulfuros polimetálicos que precipitan del agua caliente que sale de las ventilas hidrotermales y que puede alcanzar temperaturas mayores de 300°C. Nosotros registramos temperaturas > 250°C pero esta temperatura debe ser considerada como una temperatura aproximada ya que no fué posible introducir el sensor de temperatura en el flujo de agua caliente. Caracterizar la temperatura de un campo específico de ventilas hidrotermales puede ser muy útil. Se espera que los distintos mineráles que se encuentran disueltos en las aguas calientes de una ventila hidrotermal precipiten de acuerdo a la temperatura del agua.

tube worms with fish
A close-up view of the vent tube worms (Riftia). If you look closely you’ll see several fish hiding in among the worms. The little black spots covering the worm casings are limpets.

Después de haber explorado el campo de las ventilas hidrotermales, nos dirijimos al extremo norte de un gran derrame de lava. Nos pasamos el resto de la inmersión colectando muestras de lava para caracterizar el tipo de vulcanismo presente en esta zona. Deben estar atentos ya que el día de mañana haremos una inmersión en el extremo sur de este derrame de lava para empezar darnos una mejor idea de los procesos volcánicos que caracterizan esta región.

—Julie Martin<
Traducido por Rigoberto Guardado.


Previous log next log

Volcanoes & Seamounts
 Equipment

R/V Western Flyer

The R/V Western Flyer is a small water-plane area twin hull (SWATH) oceanographic research vessel measuring 35.6 meters long and 16.2 meters wide. It was designed and constructed for MBARI to serve as the support vessel for ROV operations. Her missions include the Monterey Bay as well as extended cruises to Hawaii, Gulf of California and the Pacific Northwest.

ROV Doc Ricketts

ROV Doc Ricketts is MBARI's next generation ROV. The system breaks new ground in providing an integrated unmanned submersible research platform, with many powerful features providing efficient, reliable and precise sampling and data collection in a wide range of missions.

Push cores

A push-core looks like a clear plastic tube with a rubber handle on one end. Just as its name implies, the push core is pushed down into loose sediment using the ROV's manipulator arm. As the sediment fills up the core, water exits out the top through one-way valves. When the core is pulled up again, these valves close, which (most of the time) keeps the sediment from sliding out of the core tube. When we bring these cores back to the surface, we typically look for living animals and organic material in the sediments.

Niskin bottles

Niskin bottles are used to collect water samples as well as the tiny bacteria and plankton in that volume. The caps at both ends are open until the bottles are tripped, when the caps snap closed.


Biobox

The box fits in a partition in the sample drawer. It is shown open, with an animal being placed into it by the ROV's manipulator. When the lid is closed, the box will hold water to protect the animals inside.


Rock crusher

This device is used to collect volcanic glass fragments from the surface of a flow. It is made of about 450kg of lead and steel and is launched over the stern of the ship on a wire. Fragments of rock that break off of the lava flow on impact are trapped in wax-tipped cones mounted around the crusher. The wax is melted in the lab to liberate the rock particles for analysis.

Benthic toolsled

The benthic toolsled is attached to the bottom of the ROV for our geology dives. Its components are the manipulator arm and the sample drawer. The sample drawer is shown open on deck, full of rocks. Normally it is closed when the vehicle is operating and is opened only when a sample needs to be stowed. Partitions in the drawer help us keep the rocks in order. The rocks often look alike, but the conditions and chemistries of the eruptions are different so it is important that we know where each came from.

Glass suction sampler

This equipment is used to vacuum glass particles and larval animals from cracks and crevices. The carousel of small plastic jars fitted with wire mesh will be mounted in the benthic toolsled. The hose will be held by the ROV's manipulator and a suction will be drawn by the pump.

Sediment scoops

Canvas bags on a T-handle for collecting gravel or other materials that fall out of a push-core.


Temperature probe

Held by the ROV's manipulator, the wire on the right is placed into the fluid emitted from a hydrothermal vent to record the temperature.


Vibracores

Vibracoring is a common technique used to obtain samples from water-saturated sediment. These corers work by attaching a motor that induces high frequency vibrations in the core liner that in turn liquefies the sediment directly around the core cutter, enabling it to pass through the sediment with little resistance.


 Crew

R/V Western Flyer

Ian Young
Master


 

George Gunther
First Mate


 

Matt Noyes
Chief Engineer


 

Andrew McKee
Second Mate


 

Lance Wardle
First Engineer


 

Shaun Summer
Relief First Engineer


 

Olin Jordan
Oiler


 

Craig Heihn
Relief Deckhand


 

Jason Jordan
Relief Deckhand


 

Dan Chamberlain
Electronics Officer


 

Patrick Mitts
Steward


 

ROV Doc Ricketts

Knute Brekke
Chief ROV Pilot


 

Mark Talkovic
Senior ROV Pilot


 

Randy Prickett
Senior ROV Pilot


 

Bryan Schaefer
ROV Pilot/Technician


 

Eric Martin
ROV Pilot/Technician


 

 Research Team

Dave Clague
Chief Scientist
MBARI

Dave's research interests are nearly all related to the formation and degradation of oceanic volcanoes, particularly Hawaiian volcanoes, mid-ocean ridges, and isolated seamounts. Topics of interest include: compositions of mantle sources for basaltic magmas and conditions of melting; volatile and rare-gas components in basaltic magmas and their degassing history; chronostratigraphic studies of eruption sequence and evolution of lava chemistry during volcano growth; subsidence of ocean volcanoes and its related crustal flexure, plate deformation, and magmatic activity; geologic setting of hydrothermal activity; origin of isolated seamounts; and monitoring of magmatic, tectonic, and hydrothermal activity at submarine and subaerial volcanoes.

Jenny Paduan
Research Specialist
MBARI

Jenny works with Dave Clague in the submarine volcanism project, processing the high-resolution MBARI mapping AUV data and interpreting the maps using ROV observations and samples from our research sites. On this cruise, she will stand watches in the ROV control room, help with rock and sediment sample workup and curation once the vehicle is on deck, and coordinate these cruise logs. She is now quite solidly a marine geologist, but her degrees are in biochemistry (Smith College) and biological oceanography (Oregon State University). She is thankful for the opportunities that have led her to study volcanoes, and loves being involved with the research and going to sea. She looks forward to discovering more about how Earth works.

Lonny Lundsten
Senior Research Technician
MBARI

On this cruise, Lonny will be in charge of biological sample collection and processing and video data management. This work entails identifying unique biological and geological features that will be seen during the dive, while using MBARI-designed software to log the observations. He is especially excited about this expedition, because no one has surveyed this particular seamount before, and he expects to find many new species on this cruise.

Julie Martin
Senior Research Technician
MBARI

Julie works with the submarine volcanism group, where she currently produces high resolution maps of the seafloor that are used to identify geologic features along submarine ridges and seamounts. Her research interests also include modeling of volcanic ash from sub-aerial, large-scale explosive eruptions.

Ryan Portner
Postdoctoral Fellow
MBARI

Ryan's work with the submarine volcanism project primarily focuses on the formation and distribution of volcaniclastic deposits on active and extinct seamounts and mid-ocean ridges. By categorizing the diversity in these deposits with respect to volcanic landforms he hopes to better understand the underlying controls on explosive vs. non-explosive deep marine eruptions. His background research on deep-marine gravity flow deposits preserved in sedimentary-volcanic successions exposed on land lends a comparable platform to study similar deposits of the modern oceans.

Julie Bowles
Collaborator

Julie is a Research Associate and Staff Scientist with the Institute for Rock Magnetism at the University of Minnesota. As a paleomagnetist, Julie studies variations in Earth's magnetic field and how those variations get recorded in rocks and sediments. One of Julie's particular interests involves using paleofield variations recorded in mid-ocean ridge lava flows to place age constraints on the flows. On this expedition, Julie is interested both in using this technique to try to date some of the young lava flows and in gaining a better understanding of how the Earth's field has varied in this particular location.

Paterno Castillo
Collaborator

Pat is a Professor of Geology at the Scripps Institution of Oceanography, University of California, San Diego. His research interests include petrology and geochemistry of magmas produced within and along divergent and convergent boundaries of tectonic plates, magmatic and tectonic evolution of continental margins and mantle geodynamics. On this expedition, Pat is interested in the petrologic and tectonic evolution of the newly formed oceanic basement in the Gulf of California.

Brian Dreyer
Isotope Geologist
UC Santa Cruz
Institute of Marine Sciences

Brian studies the recent magmagenesis and petrology of the Juan de Fuca Ridge. His interest in mid-ocean ridges began during his postdoctoral fellowship with MBARI's submarine volcanism project; there, he utilized uranium-series disequilibria within individual lavas of Axial Seamount to clarify eruption and petrogenetic timescales. At mid-ocean ridge systems globally, Brian is interested in a) how variability in lava morphology, geochemistry, and petrology reflect deeper mantle-melting and magmatic processes and their complex interplay with tectonism and b) improving the chronological framework of the ridge magmatic plumbing systems. Brian received his Ph.D. in Earth and Planetary Science from Washington University in St. Louis in 2007.

Rigoberto Guardado
Collaborator
Universidad Autónoma de Baja California

Rigoberto Guardado is a teacher and research scientist with the Facultad de Ciencias Marinas (Marine Sciences Faculty) at the University of Baja California in Mexico. As a oceanographer, Rigoberto studies sedimentation processes in the ocean. On this expedition, Rigoberto is interested in learning more about the sediments in this area of the Gulf of California.

Ronald Michael Spelz Madero
Collaborator
CICESE

Ronald Spelz earned his Ph.D. in earth sciences from Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) in 2008. His research interests are mainly focused in the structural geology and tectonic geomorphology of fault bounded basins and mountain range-fronts in northern Baja California. He is also part of the multidisciplinary research team studying the origin and effects of the El Mayor-Cucapah 7.2 magnitude earthquake which struck northern Baja in April 4, 2010. Ronald presently works in the Marine Sciences Faculty at the Universidad Autónoma de Baja California.

Hiram Rivera
Collaborator
Universidad Autónoma de Baja California

Hiram Rivera is part of the Coastal Management group and teacher in the Faculty of Marine Science at Universidad Autónoma de Baja California. Since 2008 he has worked as a technician with geographic information systems (GIS) applied to fisheries resource management. From 2010 to now he has worked with his students in public participation geographic information systems (PPGIS) 3D models applied to the use of GIS to broaden public involvement in policymaking. His interest for this cruise is to learn about the techniques associated with digital cartography of the Gulf of California.



Last updated: Apr. 26, 2012