Monterey Bay Aquarium Research Institute

Midwater Biology Logbook
Day 8: Looking at the big picture
February 24, 2012

The R/V Western Flyer seen from Steve Haddock’s kite camera.

Although you often hear that the ocean represents two-thirds of the planet, it is actually much, much more. Because of its depth, the volume of available living space in the sea dwarfs that of familiar terrestrial environments, so that well over 90 percent of available space on the planet is in the deep ocean. Despite its significance, this habitat is rarely studied, and many basic questions remain.

One thing that we have learned through decades of deep submersible work is that gelatinous organisms serve key roles and can transform the environment. Jelly-like plankton use a wide range of feeding specializations to survive in the ocean. Some called salps and larvaceans can filter out microscopic cells; others eat bug-like crustaceans, and some even eat other jellies. These jelly “top predators” include the ctenophore Beroe and funny-looking jellies called narcomedusae, which swim with their tentacles in front of them, hoping to snag other jellies by their tentacles.

The irony is that these fascinating organisms are incredibly abundant (because they occur throughout vast spaces), yet they are also almost totally unknown. Many of them are less substantial than a wet tissue or piece of jello, so they can be impossible to study except with remotely operated vehicles (ROVs). As a result, we are continually finding undescribed species. These are not just animals that are different by a whisker, but they are often entirely new families of animals. On this cruise we have had to make up a new batch of placeholder names (like the “Brick Red Diamond” comb jelly) for some of the creatures we have seen. A true assessment of marine biodiversity is clearly dependent on discovering and studying these groups, even if they seem obscure and exotic.

When a species is undescribed we often give it a placeholder name like the “Brick Red Diamond” comb jelly.

At MBARI, we spend a lot of time exploring and studying life in the waters off the California coast. This cruise and the international team of experts aboard provide a great opportunity to compare our image of the “normal” deep sea, and see what is different and what we might be able to generalize to the global ocean. Because the Gulf of California is a rather extreme environment, we can also use observations here to predict how ecosystems might be affected if the ocean becomes more stratified or if low-oxygen zones became more intense.

We have seen a few different patterns regarding the distribution of organisms here in the Gulf. Vertically, the water column is dramatically stratified, meaning that it is divided into discrete physical layers. As the ROV descends, and even during SCUBA dives covering only the upper 25 meters, we see organisms in very high concentrations across a narrow depth range. They have sorted themselves into their preferred microhabitat, whether based on temperature, oxygen, light levels, nutrients, competition, or predation.

Another trend we have seen is that horizontally, the environment is very dynamic. Winds, tides, currents, and animal behavior help swirl and mix communities across space, so the ROV can see different things on the way down than on the way up. When we have conducted blue-water dives twice in the same geographical location, the organisms present can be completely different. Two days ago, the waters above Pescadero Basin were full of ctenophores and salps, but today our dive near the same spot was a soup of different species of pelagic snails. On yesterday's SCUBA dive at our more northern location, we saw exactly one animal in the water—not even copepods, which are the bugs of the sea. Fortunately the siphonophore that we did see was of interest to us because of its intense fluorescence.

This calycophoran siphonophore was collected on several of our blue-water dives. Steve Haddock and Meghan Powers viewed it in the lab and observed brilliant fluorescence. Photo by Steve Haddock.

How do deep-sea animals find each other and how do they communicate? One of the most effective ways is by making light, through a process called bioluminescence. Although this ability seems like science fiction to us, it is actually very common in the ocean, and nearly all of the medusae, comb jellies, and siphonophores we have collected, not to mention the fish, squid, and shrimp, are able to make their own light.

Video of Beroe sp. bioluminescing.

Animals use this “super-power” as a way find mates, defend against predators, and attract food. Siphonophores in the genus Erenna, which use glowing lures to attract small fish, have been extremely abundant on this trip, and we have seen one or two species on every dive.

Fluorescence is a tool we can use to study bioluminescence. When we shine a blue light on an organism, some chemicals inside of them, including light-emitting bioluminescent chemicals, can be excited to show green or even red fluorescence emissions. We can also sometimes use these fluorescent signals to reveal dietary linkages. Solmundella is one of the jelly-eating narcomedusae mentioned above. Photographing under fluorescent conditions revealed that the last prey item in its flower-shaped stomach contained fluorescent proteins, and we can confirm this by measuring the emission spectrum—the precise color of the light. We can also do fluorescence surveys with the ROV using special LED lights to discover novel fluorescent patterns.

Solmundella, a narcomedusa, exhibits vivid fluorescence when viewed in the lab under blue light. Photo by Steve Haddock.
When the ROV shines blue light on this frittilarid larvacean it displays bright fluorescence.

After the cruise ends, organisms seen on each dive will be quantified by Video Lab experts, including Kyra Schlining, with corroboration based on DNA analyses and the ship- and lab-based identification of collected specimens. This rich data set will provide the basis for comparison with the communities of the Eastern Pacific, as well as correlations with physical measurements of the water column and the physiological data that Erik Thuesen is collecting.

Using high-tech tools is one way to monitor the ocean. Another way is to have many eyes watching and gathering data. This citizen-science approach is what we are trying to use to monitor global jellyfish trends, through the web site and database

Chief scientist Steve Haddock operates the main camera in the ROV control room.

All of these means are necessary to improve our understanding of life in the ocean. We and the little ‘Brick Red Diamond’ ctenophore are all linked by our dependence on a healthy ocean, from its surface to its greatest depths.

—Steve Haddock

Spanish translation by Rebeca Gasca:

Aunque a menudo escuchamos que el océano representa dos terceras partes del planeta, de hecho es mucho más. Debido a la profundidad, el espacio  disponible para la vida en el mar sobrepasa el de los ambientes terrestres, por lo que más del 90% de espacio disponible en nuestro planeta es el océano con toda su profundidad. A pesar de su importancia, este hábitat es raramente estudiado y muchas preguntas básicas permanecen aun sin respuesta.

Una de las cosas que hemos aprendido a través de las décadas de estudios con submarinos es que los organismos gelatinosos juegan papeles clave pudiendo transformar el ambiente. El plancton gelatinoso utiliza un amplio rango de maneras distintas de alimentarse para sobrevivir en el océano. Las llamadas salpas y larváceos pueden filtrar células microscópicas; otras comen crustáceos, y algunas se alimentan de otros organismos gelatinosos. Esos depredadores carnívoros, ubicados al final de la cadena alimenticia, incluyen al ctenóforo Beroe y las narcomedusas, las cuales nadan con sus tentáculos frente a ellas, esperando atrapar a otras medusas con sus tentáculos.

Lo irónico es que a pesar de ser increíblemente abundantes (debido a que habitan en toda la columna de agua), esos fascinantes organismos permanecen casi desconocidos.  Muchos de ellos son menos consistentes que un pedazo de gelatina, así que es imposible estudiarlos a menos que sea con un submarino (ROV, o vehículos de control remoto). Esa es la razón por la que se siguen descubriendo especies nuevas. No son animales que sean distinguidos sólo por algunas espinas, sino que a menudo son una familia completamente nueva. En este crucero hemos tenido que inventar nuevos nombres comunes para distinguir las especies que encontramos (como el ctenóforo “diamante color ladrillo”). Un verdadero conocimiento de la biodiversidad marina depende claramente del descubrimiento y el estudio de esos grupos, aun cuando se les puede considerar oscuros y exóticos.

En MBARI, pasamos mucho tiempo explorando y estudiando la vida en las aguas frente a la costa de California. Este crucero y el equipo internacional de expertos a bordo proporcionan una gran oportunidad para comparar nuestra imagen “normal” de la profundidad de los mares, y ver lo que es diferente y lo que podemos generalizar del océano global. Debido a que el Golfo de California es más bien un ambiente considerado extremo, también podemos utilizar las observaciones hechas aquí para predecir cómo los ambientes pueden ser afectados si el océano se vuelve más estratificado o si la capa de mínimo oxígeno se vuelve más intensa.

Hemos visto algunos patrones distintos relacionados con la distribución de los organismos aquí en el golfo. Verticalmente, la columna de agua está fuertemente estratificada, lo que significa que se divide en capas distinguibles físicamente. Conforme el ROV desciende, y aun buceando con equipo SCUBA, que sólo abarcan los primeros 25 metros de profundidad, vemos organismos en muy altas concentraciones a través de un intervalo de profundidad muy angosto. Los organismos se acomodan en su microhábitat preferido, ya sea de temperatura, oxígeno, nivel de luz, nutrientes, competencia, o depredación.

Otro patrón que hemos visto es que  horizontalmente, el ambiente es muy dinámico. Los vientos, las mareas las corrientes y el comportamiento de los animales ayuda a mezclar a las comunidades en el espacio, así, el ROV puede ver diferentes cosas en el camino hacia abajo que  hacia arriba. Cuando hemos buceado con equipo SCUBA dos veces en el mismo lugar, los organismos pueden ser completamente diferentes. Hace dos días el agua  arriba de la cuenca Pescadero tenía muchos ctenóforos y salpas, pero hoy, encontramos que en el mismo lugar había una mezcla de distintas especies de caracoles pelágicos.  En el buceo de ayer, en una posición más al norte,  vimos sólo un animal en el agua, ni siquiera copépodos, los cuales son los organismos más abundantes del mar. Afortunadamente, el sifonóforo que vimos era interesante  debido a su intensa fluorescencia.

¿Cómo se encuentran los animales de las profundidades unos a otros y cómo se comunican? Una de las maneras más efectivas es produciendo luz, en un proceso llamado bioluminiscencia. Aunque esta capacidad nos pueda parecer de ciencia ficción, es de hecho muy común en el océano, y casi todas las medusas, ctenóforos y sifonóforos que hemos recolectado, sin mencionar a los peces, calamares y camarones, son capaces de producir su propia luz.

Los animales usan estos “super poderes” para encontrar a sus parejas, defenderse contra los depredadores y atraer a sus presas. Sifonóforos del género Erenna, los cuales utilizan carnadas brillantes para atraer a peces pequeños, han sido extremadamente abundantes en este viaje y hemos visto una o dos especies en cada inmersión.

La fluorescencia es una herramienta que podemos utilizar para estudiar la bioluminiscencia. Cuando alumbramos a un organismo con una luz azul, algunas sustancias químicas dentro de ellos, incluyendo los que emiten bioluminiscencia, pueden provocar que produzcan  fluorescencia verde o en algunos casos roja. Podemos también usar a veces esas señales fluorescentes para revelar dietas. Solmundella es una de las narcomedusas mencionadas arriba,  que se alimentan de otros organismos gelationosos. El tomarle fotografías bajo condiciones de fluorescencia reveló que la última presa en su estómago contenía proteínas fluorescentes, y podemos confirmarlo midiendo el espectro de emisiones (el color exacto de la luz). También podemos hacer búsquedas de fluorescencia con el ROV utilizando luces LED para descubrir nuevos patrones de fluorescencia.

Después de que el crucero termine, los organismos vistos en cada inmersión serán cuantificados por expertos como Kyra Schlining, basados en las imágenes grabadas en los videos realizados de cada inmersión y en las identificaciones realizadas tanto en el barco como  en el laboratorio y corroborándolas  por medio de análisis de ADN. Esta rica base de datos  proveerá las bases para hacer comparaciones entre comunidades del Pacífico oriental, y para establecer correlaciones con datos físicos de la columna de agua y datos fisiológicos que Erik Thuesen está recolectando.

Usando instrumentos de alta tecnología es una de las maneras de monitorear el océano. Otra manera es tener muchas personas mirando y obteniendo datos. Esta aproximación de ciencia ciudadana es lo que estamos tratando de usar para monitorear las tendencias globales de la distribución de las medusas, a través de un sitio web y la base de datos  Todos los medios son necesarios para mejorar nuestro entendimiento de la vida en el océano.  Nosotros y el ctenóforo “diamante color ladrillo” estamos todos enlazados por nuestra necesidad de tener un océano saludable, desde su superficie hasta las profundidades.

—Steve Haddock

Previous log Next log


R/V Western Flyer

The R/V Western Flyer is a small water-plane area twin hull (SWATH) oceanographic research vessel measuring 35.6 meters long and 16.2 meters wide. It was designed and constructed for MBARI to serve as the support vessel for ROV operations. Her missions include the Monterey Bay as well as extended cruises to Hawaii, Gulf of California and the Pacific Northwest.

ROV Doc Ricketts

ROV Doc Ricketts is MBARI's next generation ROV. The system breaks new ground in providing an integrated unmanned submersible research platform, with many powerful features providing efficient, reliable and precise sampling and data collection in a wide range of missions.

Blue-water SCUBA diving rig

Blue water diving is a highly specialized mode of scientific diving that lets researchers observe, experiment, and collect delicate midwater organisms in situ. A weighted down line is suspended from the surface for the divers to attach the "trapeze" to which they attach their individual safety lines. Divers are attached to their safety lines by quick releases and a safety diver watches over all of them from near the trapeze throughout the dive.

Two-meter midwater trawl

A midwater trawl collects specimens while being towed behind the Western Flyer. Researchers have the option of trawling with the net open (as seen in this photo) or keeping the net closed until a particular depth is reached and then opening the net. The net can then be closed prior to recovery. This provides scientists with a discrete sample from a particular depth.

Detritus sampler

Detritus samplers are large plexiglass containers with lids that can be controlled by the pilot of the ROV and gently closed once an organism is trapped inside.


R/V Western Flyer

Ian Young


George Gunther
Relief Captain, Legs 1 & 2


Matt Noyes
Chief Engineer


Andrew McKee
First Mate, Legs 1 & 2


Shaun Summer
Relief First Engineer


Paul Ban
Second Mate, Legs 1 & 2


Olin Jordan


Craig Heihn
Relief Deckhand


Jason Jordan
Relief Deckhand


Dan Chamberlain
Electronics Officer


Patrick Mitts


ROV Doc Ricketts

Knute Brekke
Chief ROV Pilot


Mark Talkovic
Senior ROV Pilot


Randy Prickett
Senior ROV Pilot


Bryan Schaefer
ROV Pilot/Technician


Eric Martin
ROV Pilot/Technician


 Research Team

Steve Haddock
Chief Scientist

Steve Haddock studies the biodiversity and bio-optical properties of gelatinous zooplankton (various types of jelly-like animals). He uses molecular and morphological traits to examine the relationships of rarely-studied, deep-sea comb jellies and other open-ocean drifters, many of which are new to science. These animals also are able to make their own light (bioluminescence); Steve is interested in the genes involved in light-production.

Lynne Christianson
Senior Research Technician

Lynne works in Steve Haddock's laboratory and her research focuses on exploring the biodiversity of marine zooplankton, especially cnidarians and ctenophores (jellies) and phaeodarians (radiolarians). She uses the tools of molecular biology to aid in the identification of these animals, to study their evolutionary relationships, and to investigate the origin and function of bioluminescence and fluorescence. In addition to assisting in the collection and examination of animals from ROV dives, trawls, and blue-water scuba dives, her main job will be cruise logistics. Her goal is to make this cruise as successful as possible for all the scientists on board! She's looking forward to seeing how the diversity of midwater animals in the Gulf of California compares to those in the Monterey Bay.

Henk-Jan Hoving
Postdoctoral Fellow

Henk-Jan is a postdoc in the Midwater Ecology Group of Bruce Robison, Ph.D., investigating the life history strategies of pelagic cephalopods. Cephalopods have one reproductive cycle after which they die. Henk-Jan is interested in how long deep-sea cephalopods live, and how different species shape their reproductive strategies to optimize their single reproductive event. During the expedition in the Gulf of California he hopes to collect various pelagic cephalopod species and determine their age using their statoliths. Statoliths are hard, calcareous masses in the squid's organs of balance in which increments are periodically laid down (similar to rings in a tree). Additionally, a baited camera system will be deployed over the side of the ship to attract and record midwater fish and squid. The species seen by this camera system will be compared with the species encountered using remotely operated vehicles (ROVs).

George Matsumoto
Senior Research Specialist

George works in the fields of research and education. He is interested in a wide variety of gelatinous organisms and is focusing on Bathochordaeus—a large larvacean that has been studied in Monterey Bay using ROVs, but one that we hope to find and work with on scuba while in the Gulf of California. As a senior education and research specialist at MBARI, George's role involves several different projects: seminar coordinator, summer internship coordinator, livelink mentor, distance education, links between the research institute and other partners, and other projects that haven't begun yet. He is interested in the open ocean and deep-sea communities with particular emphasis on invertebrates. Specific areas of interest include: Ecology and biogeography of open ocean and deep sea organisms; Functional morphology, natural history, and behavior of pelagic and benthic organisms; Systematics and evolution of ctenophores and cnidarians (molecular phylogeny).

Kyra Schlining
Senior Research Technician

Kyra is a senior research technician in the video lab at MBARI. Her main responsibility, both on shore and at sea, is to manage and annotate the video footage recorded during MBARI ROV missions. Kyra specializes in identifying deep-sea organisms and describing their behaviors, as well as, recording observations on habitat and equipment. On the ship,she will also assist with processing biological samples and writing up the cruise logs. Kyra's duties in the video lab also include assisting scientists with accessing the data from the video database for publications, editing video from our archives using Final Cut Pro, and presenting current MBARI research to the public, mainly through our sister organization, the Monterey Bay Aquarium.

Meghan Powers
Graduate Research Assistant

Meghan is a doctoral candidate at University of California, Santa Cruz working in Steve Haddock's lab. Her research is focused on understanding the molecular biology and evolution of bioluminescence in a variety of deep-sea zooplankton including cephalopods, chaetognaths, and jellyfish.

Stephanie Bush
Postdoctoral Fellow
University of Rhode Island

Stephanie joined the Seibel Lab at the University of Rhode Island as a postdoctoral researcher after finishing her graduate work in MBARI's Midwater Ecology Lab and the Caldwell Lab at University of California, Berkeley. She is broadly interested in marine organismal ecology, and her current research explores animal physiological adaptations to living in oxygen minimum zones and how we can predict the response of marine organisms to ocean warming. Additionally, she is part of collaborative effort to study animal camouflage in open water, focusing particularly on the polarization components. She is also interested in the connectivity between populations of planktonic animals and how it relates to speciation and biodiversity in the open ocean.

Rebeca Gasca
El Colegio de la Frontera Sur, Unidad Chetumal, Mexico

Rebeca's research is on the biology and ecology of zooplankton, especially of siphonophores and hyperiid amphipods. She is interested in community changes related with water masses and environmental phenomena like El Niño. Also, the symbiotic associations between gelatinous zooplankton and hyperiids have been among her main interests and this kind of expedition represents an opportunity to observe those behaviors in situ.

Karen Osborn
Smithsonian National Museum of Natural History

After completing her Ph.D at UC Berkeley and MBARI, then a postdoc at Scripps Institution of Oceanography, Karen received a scientist position at the Smithsonian National Museum of Natural History. Her research focuses on the evolution of pelagic invertebrates, primarily polychaete worms and isopod crustaceans. During this expedition she will be working on drifting acorn worms, systematics of tomopterid polychaetes, and the feeding and population genetics of munnopsid isopods.

Erik Thuesen
Evergreen State College

Erik Thuesen is a member of the faculty in Zoology at The Evergreen State College. His research focuses on the ecological physiology and biodiversity of marine invertebrates. He has studied many kinds of gelatinous zooplankton, including chaetognaths, ctenophores, and medusae. He is particularly interested in the physiological and biochemical adaptations to life in marine environments, such as the deep sea and estuaries. He received a B.S. from Antioch College, a M.A. from the University of Tokyo and his Ph.D. from the University of California at Santa Barbara. At Evergreen, he teaches invertebrate zoology, symbiosis, biodiversity and marine science.

Last updated: Feb. 27, 2012