Monterey Bay Aquarium Research Institute
2012 bioluminescence and biodiversity expedition

Day 6—The last day (in more ways than one)
July 15, 2013

Meghan Powers is a doctoral candidate at University of California Santa Cruz, working in the Haddock lab. She is interested in the evolution of bioluminescence. She uses molecular techniques to obtain genetic information from deep-sea zooplankton including cephalopods, chaetognaths, and jellies. She looks for genes that produce the bioluminescent protein. New bioluminescent molecules could be engineered and used to illuminate cells of interest in biomedical research. There are so many luminescent systems and chemistry in the ocean and it is possible that new applications will be useful in biomedical research.

Meghan transfers tissue to cryovials for preservation. Right: She uses a microscope to dissect a specimen.

One of the groups of animals that Meghan works with are the ctenophores, or comb jellies. Comb jellies are beautiful gelatinous animals that live throughout the ocean. They have ‘combs,' which are rows of cilia they use to swim. They are the largest animal to use cilia for locomotion. Almost all ctenophores are bioluminescent and generally emit blue to green light. Ctenophores also occupy an interesting place at the base of the animal tree of life. They are important to understanding the early evolution of animals and how complex forms and functions evolved.

Clockwise from upper left: An amber lobate ctenophore, a vermillion lobate, a deep red cydippid, Bathyctena chuni. Many of the ctenophores have yet to be described by scientists.

Meghan hopes to defend her dissertation this fall, so this will probably be her last expedition as a student in the Haddock lab. She has been a pleasure to work with and a great friend to many people at MBARI. We will miss her when she moves on to the next step in her career, but hope she’ll still come on cruises with us in the future!

This cruise has been short, but very successful. We had eight dives in six days and today ROV Doc Ricketts had its 500th dive! We were all excited to be a part of this anniversary for the Ricketts and would like to thank the ROV pilots and Western Flyer crew for making this such a great cruise. It’s always fun to go to sea, but with this crew, these pilots, and this science team, we get to learn while laughing a lot, too.

Note from Steve Haddock:
When a cruise is coming up, Lynne Christianson, my senior technician, always begs me to bring Susan von Thun along. I always pretend to be wondering whether we have room, but the truth is that she is one of the best people to have aboard the ship. Not only is she helpful in all kinds of lab activities, and does a great job with cruise blogs, but she is actually one of the world's authorities in taxonomy and natural history of midwater animals. She knows an amazing number of facts (quantity: 999) that nobody else in the world knows (which dragonfish dart away and which stay; what salps have a bluish tint in the video; the depth distribution of undescribed siphonophores; what a Doliolula looks like from 30 meters away). She is a great member of the scientific party and we are grateful that she contributes her knowledge and talents to the success of our expeditions.

Clockwise from left: Susan von Thun, Stefan Siebert, Steve Haddock, Casey Dunn, Alex Jaffe, Jamie Baldwin-Fergus, Freya Goetz, Danielle Haddock, Lynne Christianson, Meghan Powers.

The Haddock lab poses: Lynne, Meghan, Steve, Alex (the photobomber is Randy Prickett).

—Susan von Thun

Previous log


Day 6 Day 6
July 15, 2013
The last day (in more ways than one)

Day 5 Day 5
July 14, 2013
Friends and interns

Day 4 Day 4
July 13, 2013
Tribute to an inspiring mentor

Day 3 Day 3
July 12, 2013
The spectacular diversity of siphonophores

Day 2 Day 2
July 11, 2013
The best bang for the buck!

Day 1 Day 1
July 10, 2013
Out to sea


R/V Western Flyer

The R/V Western Flyer is a small water-plane area twin hull (SWATH) oceanographic research vessel measuring 35.6 meters long and 16.2 meters wide. It was designed and constructed for MBARI to serve as the support vessel for ROV operations. Her missions include the Monterey Bay as well as extended cruises to Hawaii, Gulf of California, and the Pacific Northwest.

ROV Doc Ricketts

ROV Doc Ricketts is MBARI's next generation ROV. The system breaks new ground in providing an integrated unmanned submersible research platform, with many powerful features providing efficient, reliable, and precise sampling and data collection in a wide range of missions.

Detritus sampler

Detritus samplers are large plexiglass containers with lids that can be controlled by the pilot of the ROV and gently closed once an organism is trapped inside.

High frequency suction sampler

This sampler acts like a vacuum cleaner sucking up samples and depositing them into one of the 12 buckets.

Blue-water scuba rig

Blue-water diving is a highly specialized mode of scientific diving that lets researchers observe, experiment, and collect delicate midwater organisms in situ. A weighted line is suspended from the surface for the divers to attach the "trapeze" to which they attach their individual safety lines. Divers are attached to their safety lines by quick releases and a safety diver watches over all of them from near the trapeze throughout the dive.

Two-meter midwater trawl

A midwater trawl collects specimens while being towed behind the Western Flyer. Researchers have the option of trawling with the net open (as seen in this photo) or keeping the net closed until a particular depth is reached and then opening the net. The net can then be closed prior to recovery. This provides scientists with a discrete sample from a particular depth.

 Research Team

Steve Haddock
Chief Scientist

Steve Haddock studies the biodiversity and bio-optical properties of gelatinous zooplankton (various types of jelly-like animals). He uses molecular methods along with morphological traits to examine the relationships of rarely-studied, deep-sea comb jellies and other open-ocean drifters, many of which are new to science. These animals also are able to make their own light (bioluminescence), and Steve is interested in the genes involved in light-production.

Lynne Christianson
Senior Research Technician

Lynne works in Steve Haddock's laboratory. Her research focuses on exploring the biodiversity of marine zooplankton, especially cnidarians and ctenophores (jellies) and phaeodarians (radiolarians). She uses the tools of molecular biology to aid in the identification of these animals, to study their evolutionary relationships, and to investigate the origin and function of bioluminescence and fluorescence. In addition to assisting in the collection and examination of animals from ROV dives, trawls, and blue-water scuba dives, her main job will be cruise logistics. Her goal is to make this cruise as successful as possible for all the scientists on board!

Meghan Powers
Graduate Research Assistant

Meghan is a doctoral candidate at the University of California, Santa Cruz, working in Steve Haddock's lab. Her research is focused on understanding the molecular biology and evolution of bioluminescence in a variety of deep-sea zooplankton including cephalopods, chaetognaths, and jellyfish.

Danielle Haddock
Senior Grants & Accounting Specialist

Danielle has a background in biology and grant writing and handles all external funding at MBARI which includes managing grants, negotiating contracts, monitoring subawards, making people talk to each other. She is still floored by the seafaring life.

Susan von Thun
Senior Research Technician

Susan works in the MBARI video lab, where her primary responsibility is to watch video taken with MBARI's remotely operated vehicles (ROVs) and make observations about the organisms, behaviors, equipment, and geological features that she sees. While annotating video, she's become adept at identifying numerous deep-sea organisms, specializing in midwater organisms. She also works on MBARI's social media outlets. On this expedition, she will be in charge of the daily reports from this expedition and will assist with other science crew tasks.

Alexander Jaffe
Summer Intern

Alexander is an undergraduate at Harvard College, where he is majoring in Organismic and Evolutionary Biology. This summer, he is working as an intern with Steve Haddock on a project examining the ecology and diversity of midwater organisms, focusing specifically on a set of krill-eating, gelatinous zooplankton and patterns of their spatio-temporal distribution in the Greater Monterey Bay.

Casey Dunn
Assistant Professor
Brown University

Casey is an assistant professor in the Department of Ecology and Evolutionary Biology at Brown University. His lab studies the evolution and development of siphonophores, a group of colonial jellyfish that include the Portuguese Man of War. Many siphonophores live exclusively in the deep sea, and ROVs are the only way to collect them intact. Casey's lab also studies the evolutionary relationships between animals. See for more.

Freya Goetz
Research Assistant
Brown University

Freya Goetz is the research assistant to Casey Dunn at Brown University. Her interests are very broad and include phylogenetics, invertebrate symbioses, bioluminescence, chaetognath morphology, intertidal ecology, and scientific illustration of marine invertebrates (especially gelatinous zooplankton). She is currently working with Stefan Siebert to characterize gene expression spatially within a siphonophore colony, Nanomia bijuga. She is crossing her fingers for calm seas and quiet wind to maximize blue-water diving possibilities!

Stefan Siebert
Postdoctoral Fellow
Brown University

Stefan Siebert is a postdoctoral fellow in the Dunn lab at Brown University and is interested in the developmental complexity of siphonophores, a group of colonial animals belonging to the Cnidaria. He is looking forward to collecting specimens for descriptive work and for the molecular characterization of colony formation.

Jamie Baldwin-Fergus
Postdoctoral Scholar
Smithsonian National Museum of Natural History

Jamie primarily studies topics relating to visual ecology. Currently, Jamie is studying how vision physiology, optical environment, and ecological associations shape visual adaptations in hyperiid amphipods. Hyperiid amphipods are small crustacean invertebrates that are abundant from the surface down to the deepest depths of the oceans, with particular abundance in the twilight zone (200-1000 m). At twilight zone depths, available light is limited to increasingly dim and blue down-welling light and bioluminescence. In this zone, the competition to see and not be seen is a matter of life or death. As a result, hyperiids have huge variation in the shapes and function of their eyes, likely an evolutionary response to the complexities of the midwater optical environment.